THE DISTRIBUTION OF LUCAS AND ELLIPTIC PSEUDOPRIMES

DANIEL M. GORDON AND CARL POMERANCE

ABSTRACT. Let $\mathscr{L}(x)$ denote the counting function for Lucas pseudoprimes, and $\mathscr{C}(x)$ denote the elliptic pseudoprime counting function. We prove that, for large x, $\mathscr{L}(x) \leq xL(x)^{-1/2}$ and $\mathscr{C}(x) \leq xL(x)^{-1/3}$, where

 $L(x) = \exp(\log x \log \log \log x / \log \log x).$

1. INTRODUCTION

A pseudoprime is a composite number n for which $2^{n-1} \equiv 1 \mod n$. The smallest pseudoprime is 341. Let $\mathscr{P}(x)$ be the number of pseudoprimes up to x. The second author, in [12, 13], showed that for all large x

$$\exp\{(\log x)^{5/14}\} \le \mathscr{P}(x) \le xL(x)^{-1/2},$$

. ...

- - - -

where $L(x) = \exp(\log x \log_3 x / \log_2 x)$ and \log_k is the k-fold iteration of the natural logarithm. The exponent 5/14 has since been improved to 85/207 (see [14]).

Let P and Q be coprime integers with $D = P^2 - 4Q \neq 0$, P > 0 and $PQ \neq 1$. Let $U_0 = 0$, $U_1 = 1$, and $U_k = PU_{k-1} - QU_{k-2}$ for $k \ge 2$. Then a composite number n is a Lucas pseudoprime if (n, 2D) = 1 and

(1)
$$U_{n-\varepsilon(n)} \equiv 0 \pmod{n},$$

where $\varepsilon(n)$ denotes the Jacobi symbol $(D \mid n)$. Let $\mathscr{L}(x) = \mathscr{L}_{p,Q}(x)$ be the number of Lucas pseudoprimes up to x. The best known bounds for $\mathscr{L}(x)$ are:

$$\exp\{(\log x)^{c_1}\} \le \mathscr{L}(x) \le x \cdot \exp\{-c_2(\log x \log_2 x)^{1/2}\},\$$

for some absolute positive constants c_1 and c_2 . The upper bound is due to Baillie and Wagstaff [1], and the lower bound is due to Erdös, Kiss, and Sárközy [5]. Of course, the counting function $\mathscr{L}(x)$ depends on the choice of P and Q. The above result is thus understood to hold for all $x \ge x_0(P, Q)$.

The second author was supported in part by an NSF grant and the Institute for Advanced Study.

©1991 American Mathematical Society 0025-5718/91 \$1.00 + \$.25 per page

Received April 6, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11Y11; Secondary 11Y40, 11A51.

The first author was supported in part by a grant from Sandia National Laboratories.

The first author introduced a similar test using elliptic curves. Let E be an elliptic curve over \mathbf{Q} with complex multiplication by an order in $K = \mathbf{Q}(\sqrt{-r})$, for $r \in \mathbf{Z}^+$, and suppose E has a rational point $P = (x_0, y_0)$ of infinite order. Then, if n is a prime which is inert in K and does not divide the discriminant of E,

(2)
$$(n+1)P \equiv \mathscr{O} \pmod{n}$$
.

That is, when we view E as an elliptic curve over the finite field $\mathbb{Z}/n\mathbb{Z}$, the image of the point P has order dividing n + 1. An *elliptic pseudoprime* is a composite number n for which $(-r \mid n) = -1$, n is coprime to the discriminant of E, and n satisfies (2). (The concept of $(n + 1)P \equiv \mathscr{O} \pmod{n}$ for composite n will be made precise in the next section.) Let $\mathscr{E}(x) = \mathscr{E}_{E,P}(x)$ be the number of elliptic pseudoprimes less than x. The best known upper bound for elliptic pseudoprimes was recently found by Balasubramanian and Murty, in [2]: for all sufficiently large x depending on the choice of curve E and point P, we have

$$\mathscr{E}(x) \le x \cdot \exp\{-c_3 (\log x \log_2 x)^{1/2}\}.$$

The number c_3 is positive and absolute. No good general lower bounds for elliptic pseudoprimes are known; the only result is from [6], that for certain curves and points,

$$\mathscr{E}(x) \ge \sqrt{\log x} / \log_2 x \,.$$

In this paper we improve the upper bounds for $\mathscr{E}(x)$ and $\mathscr{L}(x)$. The techniques used are similar to those of [12], with modifications to deal with elliptic curves similar to those of [2]. We show that $\mathscr{E}(x) \leq xL(x)^{-1/3}$ and $\mathscr{L}(x) \leq xL(x)^{-1/2}$ for large x.

Throughout the paper, the letters p and q will always denote primes.

2. Elliptic curve preliminaries

For a field k of characteristic > 3, an elliptic curve over k may be represented as

$$E(k) = \{(x, y) \in k^2 : y^2 = x^3 + ax + b\} \cup \mathscr{O},$$

where $a, b \in k$ and \mathscr{O} is the point at infinity. E is nonsingular if the discriminant $\Delta = -16(4a^3 + 27b^2) \neq 0$. In this case, E(k) can be naturally made into an additive group with \mathscr{O} being the identity element.

Suppose E is a nonsingular elliptic curve defined over Q. Let End E denote the ring of endomorphisms of $E(\mathbf{Q})$. It is known that End E is either equal to Z or an order in an imaginary quadratic field $K = \mathbf{Q}(\sqrt{-r})$. In the latter case, E is said to have complex multiplication by K. For instance, curves of the form $y^2 = x^3 - Dx$ have complex multiplication by $\mathbf{Q}(\sqrt{-1})$; the endomorphism corresponding to *i* sends a point (x, y) to (-x, iy).

If E is defined over Q and has complex multiplication by K, then K must have class number one, so that $r \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$. Conversely, for each such r there are elliptic curves with complex multiplication by

 O_K , the full ring of integers of K. In addition, the fields $\mathbf{Q}(\sqrt{-1})$, $\mathbf{Q}(\sqrt{-3})$, and $\mathbf{Q}(\sqrt{-7})$ have curves over \mathbf{Q} with $\operatorname{End} E = \mathbf{Z} + 2O_K$, and $\mathbf{Q}(\sqrt{-3})$ has curves with $\operatorname{End} E = \mathbf{Z} + 3O_K$.

For a rational number x, let u/v be its representation in lowest terms, where v > 0. Then Num(x) = u will denote its numerator, Den(x) = v its denominator, and $\tilde{x} = uv$ their product.

Let $E(\mathbf{Q})$ be a nonsingular elliptic curve defined by the equation $y^2 = x^3 + ax + b$, where the coefficients $a, b \in \mathbf{Q}$. If p is a prime with $(p, 6\tilde{\Delta}) = 1$, by an abuse of notation, we can use this same equation to define a nonsingular elliptic curve $E(\mathbf{F}_p)$ over \mathbf{F}_p , the field of p elements. In fact, there is a natural homomorphic projection $E(\mathbf{Q}) \to E(\mathbf{F}_p)$ which takes $(x, y) \in E(\mathbf{Q})$ to $(x \mod p, y \mod p)$. If one of x, y has a factor p in the denominator, then (x, y) maps to \mathcal{O} in $E(\mathbf{F}_p)$.

A celebrated theorem of Hasse is that for any nonsingular elliptic curve $E(\mathbf{F}_p)$, the number of points can be expressed as $p+1-a_p$, where $|a_p| \le 2\sqrt{p}$. There is a polynomial-time, deterministic algorithm, due to Schoof [15], for computing the number a_p . Nevertheless, for very large p, it is not an easy task to compute the order of $E(\mathbf{F}_p)$.

If E has complex multiplication by $K = \mathbf{Q}(\sqrt{-r})$, it is easier to compute $|E(\mathbf{F}_p)|$:

(3)
$$|E(\mathbf{F}_p)| = \begin{cases} p+1, & p \text{ inert in } K, \\ p+1-2\beta, & p = (\beta+\gamma\sqrt{-r})(\beta-\gamma\sqrt{-r}), \end{cases}$$

where 2β , $2\gamma \in \mathbb{Z}$. Note that if p splits in K, formula (3) does not quite give $|E(\mathbf{F}_p)|$, since we do not know the sign of β (and if $K = \mathbf{Q}(\sqrt{-1})$ or $\mathbf{Q}(\sqrt{-3})$, there are extra units which add a few more possibilities). However, this is the only indeterminacy in (3), since primes p which split in K have a unique representation up to units as $\beta^2 + r\gamma^2$.

The representation of p as $\beta^2 + r\gamma^2$ can be found in random polynomial time by factoring the polynomial $x^2 + r$ in \mathbf{F}_p , using Berlekamp's algorithm [3]. Once a number c is found such that $c^2 + r \equiv 0 \pmod{p}$, one may use the method of Cornacchia [4] to determine β and γ .

Determining the sign of β in (3) can in principle be done using class field theory; it is worked out for $K = \mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$ in [11].

For a nonsingular curve $E(\mathbf{Q})$ with coefficients $a, b \in \mathbf{Q}$, define the *division* polynomial $\psi_n(x, y)$ by

$$\begin{split} \psi_0 &= 0, \\ \psi_1 &= 1, \\ \psi_2 &= 2y, \\ \psi_3 &= 3x^4 + 6ax^2 + 12bx - a^2, \\ \psi_4 &= 4y(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b^2 - a^3), \end{split}$$

and the recursion

$$\psi_{m+n}\psi_{m-n} = \psi_{m-1}\psi_{m+1}\psi_n^2 - \psi_{n-1}\psi_{n+1}\psi_m^2.$$

Thus,

(4)
$$\psi_{2n+1} = \psi_n^3 \psi_{n+2} - \psi_{n+1}^3 \psi_{n-1}$$

and

(5)
$$2y\psi_{2n} = \psi_n(\psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2).$$

The division polynomials characterize the division points of $E(\mathbf{Q})$. Namely, $P = (x_0, y_0) \in E(\mathbf{Q})$ is an *m*-division point (i.e., $mP = \mathscr{O}$) if and only if $\psi_m(x_0, y_0) = 0$. This continues to make sense if we replace \mathbf{Q} by some algebraic extension. However, we are primarily concerned here with the connection between the division polynomials and division points on $E(\mathbf{F}_n)$.

We now state three lemmas on division polynomials. See Chapter II of Lang [10] for many facts about these polynomials and, in particular, the following lemma.

Lemma 1. Suppose $E(\mathbf{Q})$ is a nonsingular elliptic curve with coefficients $a, b \in \mathbf{Q}$, and let $P = (x_0, y_0)$ be a point of infinite order on $E(\mathbf{Q})$. For a prime p with $(p, 6\tilde{\Delta}) = 1$, let \overline{P} be the image of P in $E(\mathbf{F}_p)$. Suppose $2\overline{P} \neq \mathscr{O}$ on $E(\mathbf{F}_p)$. Then for any integer m > 2 we have

$$m\overline{P} = \mathscr{O} \text{ in } E(\mathbf{F}_n) \Leftrightarrow \psi_m(x_0, y_0) \equiv 0 \pmod{p}.$$

Of course, we understand the rational number $\psi_m(x_0, y_0)$ to be $0 \pmod{p}$ if in reduced form its numerator is $0 \pmod{p}$.

The second lemma involves the size of the values of the division polynomials.

Lemma 2. Suppose E is a nonsingular elliptic curve, and $P = (x_0, y_0)$ is a point in $E(\mathbf{Q})$ of infinite order. Then for all natural numbers m,

$$|\psi_m(x_0, y_0)| < c^{m^2 - 3}$$

for some constant c depending on the choice of curve E and point P.

Proof. Choose c such that $c^6 \ge \max\{2, y_0^{-2}\}$ and $|\psi_m(x_0, y_0)| < c^{m^2-3}$ for m = 2, 3, 4. It is easy to show by induction that $|\psi_m(x_0, y_0)| < c^{m^2-3}$ holds for all m, using (4) and (5). \Box

Corollary 1. For *E* and *P* as in Lemmas 1 and 2, the number of primes *p* for which $mP = \mathscr{O}$ in $E(\mathbf{F}_p)$ is $O(m^2)$.

Proof. By Lemma 1, all such primes p divide the numerator of $\psi_m(x_0, y_0)$, and by Lemma 2, $\psi_m(x_0, y_0) = O(c^{m^2})$. Therefore, it suffices to show that the denominator of $\psi_m(x_0, y_0)$ is bounded by $c_2^{m^2}$.

Suppose we give a grading to the ring $\mathbb{Z}[a, b, x, y]$ by giving a weight 4, b weight 6, x weight 2, and y weight 3. Then $\psi_m(x, y)$ is homogeneous

of weight $m^2 - 1$ with respect to this grading [10, p. 39]. Therefore, the denominator of $\psi_m(x_0, y_0)$ is less than

$$|\text{Den}(y_0)^{m^2/3}\text{Den}(x_0)^{m^2/2}\text{Den}(a)^{m^2/4}\text{Den}(b)^{m^2/6}| < c_2^{m^2}.$$

Corollary 1 implies the case r = 1 of Lemma 14 in Gupta and Murty [7]. They prove a more general result using a considerably more involved argument.

Suppose $E(\mathbf{Q})$, $P = (x_0, y_0)$, and p are as in Lemma 1, and $E(\mathbf{Q})$ has complex multiplication by $K = \mathbf{Q}(\sqrt{-r})$, where $(-r \mid p) = -1$. Suppose $2\overline{P} \neq \mathscr{O}$ on $E(\mathbf{F}_p)$. From (3), $(p+1)\overline{P} = \mathscr{O}$ in $E(\mathbf{F}_p)$, so that by Lemma 1,

$$\psi_{p+1}(x_0, y_0) \equiv 0 \pmod{p}.$$

The key observation is that even if we do not know for sure that p is prime, we can still check if the congruence $\psi_{p+1}(x_0, y_0) \equiv 0 \pmod{p}$ holds. We say a composite natural number n which satisfies $(n, 6\widetilde{\Delta}) = 1$ and $(-r \mid n) = -1$ is an *elliptic pseudoprime* (for the curve E and the point P) if

(6)
$$(\tilde{y}_0, n) = 1 \text{ and } \psi_{n+1}(x_0, y_0) \equiv 0 \pmod{n}.$$

This is what we mean by the congruence in (2) for *n* composite. Note that if *n* is prime, then the condition $(\tilde{y}_0, n) = 1$ assures that $2\overline{P} \neq \mathscr{O}$ on $E(\mathbf{F}_n)$.

For any natural number m with $(m, 6\tilde{\Delta}\tilde{y}_0) = 1$, define $e_m = e_m(P)$ as the least positive number k for which $\psi_k(x_0, y_0) \equiv 0 \pmod{m}$. (If no such k exists, or if $(m, 6\tilde{\Delta}\tilde{y}_0) > 1$, define $e_m = \infty$.) We will need the following lemma.

Lemma 3. If *m* is a positive squarefree number with $(m, 6\widetilde{\Delta}\tilde{y}_0) = 1$, then $e_m = \operatorname{lcm}\{e_a : q \mid m\}$ and

$$\psi_k(x_0, y_0) \equiv 0 \pmod{m} \Leftrightarrow e_m \mid k.$$

Proof. The lemma is true for primes by Lemma 1, since e_p is the order of the point \overline{P} in $E(\mathbf{F}_p)$. Suppose $m = q_1 q_2 \cdots q_s$, with the q_i 's distinct primes. Let $l = \operatorname{lcm}\{e_{q_1}, \ldots, e_{q_s}\}$. Then $\psi_l(x_0, y_0) \equiv 0 \pmod{m}$, so $e_m \leq l$. But $\psi_{e_m}(x_0, y_0) \equiv 0 \pmod{q_i}$ for each q_i , so each $e_{q_i} \mid e_m$. Thus $e_m = l$. The second assertion in the lemma follows from similar considerations. \Box

A similar lemma was proved by Ward [16] for $a, b, x_0, y_0 \in \mathbb{Z}$, without the restriction that m be squarefree.

3. Elliptic pseudoprimes

Let $E(\mathbf{Q})$ be a nonsingular elliptic curve with coefficients $a, b \in \mathbf{Q}$ and complex multiplication by $\mathbf{Q}(\sqrt{-r})$, a complex quadratic field with class number one, and let $P = (x_0, y_0) \in E(\mathbf{Q})$ have infinite order.

Theorem 1. There is a constant $X_0 = X_0(E, P)$ such that if n is a natural number and $x \ge X_0$ then

$$\#\{m \le x : m \text{ is squarefree and } e_m = n\} \le x \cdot \exp\left(-\log x \frac{3 + \log_3 x}{3\log_2 x}\right)$$

Proof. Unlike the function $l_2(m)$ used in [12], e_m may be greater than m. Thus, n in the theorem may be greater than x. To determine an upper bound for n, if $m \le x$ is squarefree and $e_m = n$, note that

(7)
$$e_m \leq \prod_{q|m} (q+1+2\sqrt{q}) \leq m \prod_{q|m} \left(1+\frac{3}{\sqrt{q}}\right) \leq x \prod_{q \leq 2\log x} \left(1+\frac{3}{\sqrt{q}}\right)$$

for x so large that $x \leq \prod_{q \leq 2 \log x} q$. That such an inequality should eventually hold follows from the prime number theorem. Using partial summation and the prime number theorem, we have

1 /2

$$\log \prod_{q \le 2 \log x} \left(1 + \frac{3}{\sqrt{q}} \right) \ll \sum_{q \le 2 \log x} \frac{1}{\sqrt{q}} \ll \frac{\left(\log x \right)^{1/2}}{\log_2 x},$$

and with (7) this implies that $e_m \leq x^{1+\varepsilon}$, for any $\varepsilon > 0$ and $x \geq x_0(\varepsilon)$. We shall take $\varepsilon = 1/2$ and shall assume *n* in the theorem satisfies $n \leq x^{3/2}$.

Let $c = 1 - (4 + \log_3 x)/(3\log_2 x)$, and $c' = c - 1/(3\log_2 x)$, with x large enough so that $c' \ge 7/8$. Then we need to estimate:

$$\sum_{\substack{m \le x \\ e_m = n}} 1 \le x^c \sum_{e_m = n} m^{-c} \le x^c \sum_{p \mid m \Rightarrow e_p \mid n} m^{-c} = x^c \prod_{e_p \mid n} (1 - p^{-c})^{-1} = x^c A,$$

say. To prove the theorem, it is sufficient to show that

(8)
$$\log A = o(\log x / \log_2 x).$$

Since $c \ge 7/8$, we have

$$\log A = \sum_{e_p \mid n} p^{-c} + O(1) = \sum_{d \mid n} \sum_{e_p = d} p^{-c} + O(1).$$

There are only a finite number of primes p with $e_p = d$ for d = 1 or 2, since those primes divide either the numerator of y_0 (for d = 2) or the denominator of y_0 (for d = 1). Assume now that $d \ge 3$.

By Corollary 1, there are at most αd^2 primes p with $e_p = d$, where α is a constant depending only on E and P. Call them q_1, q_2, \ldots, q_t , where $0 \le t \le \alpha d^2$.

For each q_i , $E(\mathbf{F}_q)$ has order kd, where kd is a multiple of d satisfying

 $q_i+1-2\sqrt{q_i}\leq kd\leq q_i+1+2\sqrt{q_i}\,.$

Therefore, we have $q_i > kd/2$. If q_i is inert in K, then $kd = q_i + 1$. If q_i splits, say $q_i = (a + \sqrt{-rb})(a - \sqrt{-rb}) = a^2 + rb^2$, then by (3)

$$kd = q_i + 1 - 2a = a^2 - 2a + 1 + rb^2 = (a - 1)^2 + rb^2.$$

The number of representations of kd as $\beta^2 + r\gamma^2$ with β , $\gamma \ge 0$ is at most the number of divisors, $\tau(kd)$, of kd (see, for example, Theorem 54 of [9]). In sum, the number of q_i with the order of $E(\mathbf{F}_{q_i})$ being kd is at most $2\tau(kd) + 1 < 3\tau(kd)$, and all of these q_i satisfy $q_i > kd/2$. From these facts, if $d \ge 3$,

$$\sum_{e_p=d} p^{-c} = \sum_{i=1}^{t} q_i^{-c} \le 6 \sum_{k=1}^{t} \tau(kd) (kd)^{-c} \le 6 \tau(d) d^{-c} \sum_{k=1}^{[\alpha d^2]} \tau(k) k^{-c}.$$

Using partial summation, and $\sum_{k=1}^{N} \tau(k) = N \log N + O(N)$ (see [8, Theorem 320, p. 264]), this is

(9)
$$= 6 \frac{\alpha^{1-c}}{1-c} \tau(d) d^{2-3c} (2 \log d + \log \alpha) (1+o(1)) \\ \ll (1-c)^{-1} \tau(d) d^{2-3c} \log d.$$

To get rid of the $\log d$ factor, note that

$$\log d \ll \max\{d^{1/\log_2 x}, \log_2 x \log_3 x\} \le d^{1/\log_2 x} \log_2 x \log_3 x.$$

Therefore,

$$d^{2-3c}\log d \ll d^{2-3c'}\log_2 x \log_3 x,$$

so that (9) implies

$$\sum_{e_{\rho}=d} p^{-c} \ll (1-c)^{-1} \tau(d) d^{2-3c'} \log_2 x \log_3 x \, .$$

From the above computations, we have

(10)
$$\log A \ll (1-c)^{-1} \log_2 x \log_3 x \sum_{d|n} \tau(d) d^{2-3c'} < (1-c)^{-1} \log_2 x \log_3 x \prod_{p|n} (1+2p^{2-3c'}+3(p^{2-3c'})^2+\cdots)$$
$$= (1-c)^{-1} \log_2 x \log_3 x \prod_{p|n} (1-p^{2-3c'})^{-2}.$$

Since $2 - 3c' \le -5/8$, we have

$$\log \prod_{p|n} (1 - p^{2 - 3c'})^{-2} = 2 \sum_{p|n} p^{2 - 3c'} + O(1) \le 2 \sum_{p \le 2 \log x} p^{2 - 3c'} + O(1),$$

where x is large enough that $\prod_{p \le 2 \log x} p \ge x^{3/2}$. This implies

(11)
$$\log \prod_{p|n} (1 - p^{2 - 3c'})^{-2} \ll \frac{(\log x)^{3 - 3c'}}{(3 - 3c')\log_2 x} \ll \frac{\log_2 x}{\log_3 x}$$

Thus, if x is sufficiently large, we have

$$\prod_{p|n} (1 - p^{2 - 3c'})^{-2} \le (\log x)^{1/2},$$

and with (10) we get

$$\log A \ll \frac{\log_2 x}{\log_3 x} \log_2 x \log_3 x (\log x)^{1/2}$$

which is $o(\log x / \log_2 x)$. \Box

Theorem 2. For all sufficiently large x, depending on the choice of E and P, the number of elliptic pseudoprimes for E, P up to x is at most

$$x \cdot \exp\left(-\frac{\log x \log_3 x}{3 \log_2 x}\right) \, .$$

Proof. As is now customary with proofs of upper bounds on pseudoprimes, we will divide the elliptic pseudoprimes $n \le x$ into several possibly overlapping classes:

- (i) $n \le x L(x)^{-1}$,
- (ii) there is a prime $p \mid n$ with $e_p \leq L(x)^3$ and $p > L(x)^{10}$,
- (iii) there is a prime $p \mid n$ with $e_n > L(x)^3$ and $p \le 3x/L(x)$,
- (iv) there is a prime $p \mid n$ inert in K with $e_p > L(x)^3$,
- (v) there is a prime $p \mid n$ which splits in K with $L(x)^3 < e_p \le \sqrt{x}L(x)$ and p > 3x/L(x),
- (vi) there is a prime $p \mid n$ which splits in K with $e_p > \sqrt{x}L(x)$ and p > 3x/L(x),
- (vii) $n > xL(x)^{-1}$ and every prime $p \mid n$ is at most $L(x)^{10}$.

Clearly, the number of *n* in class (i) is at most $xL(x)^{-1}$.

From Corollary 1, the number of primes p with $e_p = m$ is $O(m^2)$. Thus, the number of primes p with $e_p \le L(x)^3$ is

$$\sum_{m \le L(x)^3} \sum_{e_p = m} 1 \ll \sum_{m \le L(x)^3} m^2 < L(x)^9.$$

Therefore, the number of elliptic pseudoprimes in class (ii) is at most

(12)
$$\sum_{\substack{p>L(x)^{10}\\e_p \le L(x)^3}} x/p < xL(x)^{-10} \sum_{\substack{e_p \le L(x)^3}} 1 \ll xL(x)^{-1}$$

If p is a prime dividing an elliptic pseudoprime n, then from Lemma 3 (with m = p) we have

(13)
$$n \equiv 0 \pmod{p}, \quad n+1 \equiv 0 \pmod{e_p}, \quad (p, e_p) = 1.$$

The number of $n \le x$ satisfying these conditions is at most

(14)
$$1 + \frac{x}{pe_p}$$

Thus, the number of elliptic pseudoprimes in class (iii) is at most

$$\sum_{\substack{p \le 3x/L(x) \\ e_p > L(x)^3}} \left(1 + \frac{x}{pe_p} \right) \le \sum_{\substack{p \le 3x/L(x) \\ e_p > L(x)^3}} 1 + \sum_{\substack{p \le 3x/L(x) \\ e_p > L(x)^3}} \frac{x}{pe_p}$$

The first sum on the right is at most 3x/L(x), and the final sum is at most of order $x \log_2 x/L(x)^3$. Thus, the number of elliptic pseudoprimes in class (iii) is

(15)
$$\ll \frac{x}{L(x)}$$
.

If p is inert in K, $e_p|(p+1)$, and so n = p is a solution to (13). This solution is prime, so the number of elliptic pseudoprimes divisible by p is at most x/pe_p . Therefore, the number of elliptic pseudoprimes in class (iv) is at most

(16)
$$\sum_{\substack{2 L(x)^3}} \frac{x}{pe_p} \ll \frac{x \log_2 x}{L(x)^3}.$$

For the special prime p dividing an elliptic pseudoprime n in class (v), let k = n/p, and $l = e_p$. Since p splits, we have $p = \beta^2 + r\gamma^2$ for some $|\beta|, |\gamma| < \sqrt{x}$, where $2\beta, 2\gamma \in \mathbb{Z}$. From (3), we have $p \equiv 2\beta - 1 \pmod{e_p}$, since $e_p \mid |E(\mathbf{F}_p)|$. Thus,

(17)
$$n+1 = kp+1 \equiv k(2\beta - 1) + 1 \equiv 0 \pmod{l}, \qquad |\beta| < \sqrt{x}.$$

This means that possible integers 2β fall in a unique congruence class mod l/(k, l). For a fixed k and l, the number of β satisfying (17) is at most

$$\frac{4\sqrt{x}}{l}(k, l) + O(1).$$

For each β and l, the number of solutions γ to

$$|E(\mathbf{F}_p)| = \boldsymbol{\beta}^2 + r\gamma^2 + 1 - 2\boldsymbol{\beta} \equiv 0 \pmod{l}$$

is bounded by $\tau(4l/(r, 4l))(r, 4l) \ll \tau(l)$, since $r \ll 1$. Since $|\gamma| < \sqrt{x}$, the number of γ 's corresponding to any β and l is thus

$$\ll \left(\frac{\sqrt{x}}{l} + O(1)\right) \tau(l).$$

Summing over k and l shows the number of elliptic pseudoprimes in class (v) to be

$$\ll \sum_{\substack{k \le L(x) \\ L(x)^3 < l \le \sqrt{x}L(x)}} \left(\frac{\sqrt{x}}{l} (k, l) + O(1) \right) \left(\frac{\sqrt{x}}{l} + O(1) \right) \tau(l)$$
$$= x \sum_{k,l} \frac{(k, l)\tau(l)}{l^2} + O\left(\sqrt{x} \sum_{k,l} \frac{(k, l)\tau(l)}{l} \right) + O\left(\sum_{k,l} \tau(l) \right).$$

The final sum is easily seen to be $O(\sqrt{x}L(x)^2 \log x)$. The second sum is

$$\ll \sqrt{x}L(x)\sum_{k,l}\frac{\tau(l)}{l} \leq \sqrt{x}L(x)^2\sum_l\frac{\tau(l)}{l} \ll \sqrt{x}L(x)^2\log^2 x.$$

Finally, the first sum is

$$\leq xL(x)\sum_{k,l}\frac{\tau(l)}{l^{2}} \leq xL(x)^{2}\sum_{l}\frac{\tau(l)}{l^{2}} \leq \frac{x}{L(x)}\sum_{l}\frac{\tau(l)}{l} \ll \frac{x\log^{2}x}{L(x)}.$$

Combining these estimates shows that the number of elliptic pseudoprimes in class (v) is

(18)
$$\ll \frac{x \log^2 x}{L(x)}.$$

To estimate the size of class (vi), let n = kp for some k > 1. We have $p \equiv -1 + a_p \pmod{e_p}$, since $e_p \mid |E(\mathbf{F}_p)| = p + 1 - a_p$. Since $n + 1 \equiv 0 \pmod{e_p}$, we have

(19)
$$kp + 1 \equiv k(a_p - 1) + 1 \equiv 0 \pmod{e_p},$$

and so

$$|k(a_p - 1) + 1| \ge e_p > \sqrt{x}L(x)$$

Since $|a_n| \le 2\sqrt{p}$, this means that k > L(x)/3. But then, n = kp > x, and so class (vi) is empty for x sufficiently large.

We will divide the pseudoprimes in class (vii) into two subclasses: those which have a squareful divisor s (i.e., for each prime p dividing s, p^2 also divides s) with $s > L(x)^2$, and those which do not. The number of n < x in the first subclass is at most

$$\sum_{\substack{s>L(x)^2\\ \text{squareful}}} \frac{x}{s} \ll \frac{x}{L(x)},$$

using partial summation and the theorem that $\sum_{s \le t, s \text{ squareful}} 1 \ll \sqrt{t}$. For the rest of class (vii), we have $x/L(x) < n \le x$, every prime $p \mid n$ satisfies $p \le L(x)^{10}$, and the squareful part of *n* does not exceed $L(x)^2$. Then n has a squarefree divisor d satisfying

(20)
$$x/L(x)^{13} < d \le x/L(x)^{3}$$
.

(For let m = the largest squarefree divisor of n. Then $x/L(x)^3 < m \le x$. We have some $d \mid m$ with $x/L(x)^{13} < d \le x/L(x)^3$. But d is squarefree and $d \mid n$.)

As in (13), we have from Lemma 3 that

(21)
$$n \equiv 0 \pmod{d}, \quad n+1 \equiv 0 \pmod{e_d}, \quad (d, e_d) = 1.$$

Therefore, the number of such n is at most

$$\sum' \left(1 + \frac{x}{de_d} \right) \le \frac{x}{L(x)} + x \sum' \frac{1}{de_d} = \frac{x}{L(x)} + x \sum_{m \le x} \frac{1}{m} \sum_{e_d = m}' \frac{1}{d} \,,$$

where \sum' means the sum is over squarefree d in the range (20). By Theorem 1, and a partial summation argument, the inner sum is at most

$$\exp\left(-\log x \frac{2 + \log_3 x}{3\log_2 x}\right)$$

uniformly in m, provided x is sufficiently large. Therefore, the number of n in class (vii) is at most

(22)
$$x \cdot \exp\left(-\log x \frac{1 + \log_3 x}{3\log_2 x}\right)$$

for large x.

Summing the estimates for each of the classes gives the theorem. \Box

4. LUCAS PSEUDOPRIMES

The proof of the bound for $\mathscr{L}(x)$ will be similar to the proof for $\mathscr{E}(x)$. First we will need a few facts about Lucas pseudoprimes. See [1] for proofs.

Let ω_m denote the rank of apparition of *m* in the Lucas sequence U_k ; i.e., the least positive *k* for which $m \mid U_k$. If (p, 2DQ) = 1, we have

$$\omega_p \mid (p - \varepsilon(p)),$$

where we recall that $\varepsilon(p) = (D \mid p)$. Further, $\omega_{p^k} \mid p^{k-1}\omega_p$, and for any m with (m, 2DQ) = 1, we have $\omega_m = \operatorname{lcm}\{\omega_{p^k}: p^k \mid m\}$. If (m, 2DQ) = 1, then $m \mid U_k$ if and only if $\omega_m \mid k$. Also, let α and β be the distinct roots of $x^2 - Px + Q = 0$. Then for $k \ge 0$,

(23)
$$U_k = \frac{\alpha^k - \beta^k}{\alpha - \beta}.$$

We are now ready to prove:

Theorem 3. There is an $x_0 = x_0(P, Q)$ such that if n is a natural number and $x \ge x_0$, then

$$\#\{m \le x \colon \omega_m = n\} \le x \cdot \exp\left(-\log x \frac{3 + \log_3 x}{2\log_2 x}\right)$$

Proof. As in Theorem 1, we may assume that $n < x^{3/2}$. In fact, if the set in the theorem is not empty, it is possible to show that $n \ll x \log \log x$.

Let $c = 1 - (4 + \log_3 x)/2\log_2 x$, and let x be large enough that $c \ge 7/8$. Then

$$\sum_{\substack{m \le x \\ \omega_m = n}} 1 \le x^c \sum_{\omega_m = n} m^{-c} \le x^c \sum_{p \mid m \Rightarrow \omega_p \mid n} m^{-c} = x^c \prod_{\omega_p \mid n} (1 - p^{-c})^{-1} = x^c A,$$

say. As before, it suffices to show

(24)
$$\log A = o(\log x / \log_2 x).$$

Since $c \ge 7/8$, we have

$$\log A = \sum_{\omega_p \mid n} p^{-c} + O(1) = \sum_{d \mid n} \sum_{\omega_p = d} p^{-c} + O(1).$$

The primes p with $\omega_p = d$ are divisors of U_d , which is $O(\max\{|\alpha|, |\beta|\}^d)$ by (23), so there are at most O(d) of them. (The assumptions on P and Q imply that $U_d \neq 0$.) Call them q_1, q_2, \ldots, q_t , where $0 \le t \le \delta d$, for some constant δ depending only on P and Q. Those p with $p \mid 2D$ contribute at most O(1) to $\log A$, so we may assume the primes q_i do not divide 2D. Thus, each $q_i \equiv \pm 1 \pmod{d}$, so

(25)
$$\sum_{\omega_p=d} p^{-c} = \sum_{i=1}^{t} q_i^{-c} \le \sum_{k=1}^{t} 2(kd)^{-c} \le 2d^{-c} \sum_{k=1}^{\lfloor \delta d \rfloor} k^{-c} \ll (1-c)^{-1} d^{1-2c}$$

Thus,

(26)
$$\log A \ll (1-c)^{-1} \sum_{d|n} d^{1-2c} < (1-c)^{-1} \prod_{p|n} (1-p^{1-2c})^{-1}.$$

Since $1 - 2c \le -3/4$, we have

$$\log \prod_{p|n} (1-p^{1-2c})^{-1} = \sum_{p|n} p^{1-2c} + O(1) \le \sum_{p \le 2\log x} p^{1-2c} + O(1),$$

where x is large enough that $\prod_{p < 2 \log x} p \ge x^{3/2}$. This implies

(27)
$$\log \prod_{p|n} (1 - p^{1-2c})^{-1} \ll \frac{(\log x)^{2-2c}}{(2 - 2c)\log_2 x} \ll \frac{\log_2 x}{\log_3 x}$$

Thus, if x is sufficiently large, we have

$$\prod_{p|n} (1 - p^{1-2c})^{-1} \le (\log x)^{1/2}$$

and with (26) we get

$$\log A \ll \frac{\log_2 x}{\log_3 x} (\log x)^{1/2}$$

which is $o(\log x / \log_2 x)$. \Box

Theorem 4. For all sufficiently large x, depending on the choice of P, Q, the number of Lucas pseudoprimes up to x is at most $xL(x)^{-1/2}$.

Proof. As in Theorem 2, we will divide the Lucas pseudoprimes $n \le x$ into several possibly overlapping classes:

- (i) $n \leq x L(x)^{-1}$,
- (ii) there is a prime $p \mid n$ with $\omega_p \leq L(x)$ and $p > L(x)^3$,
- (iii) there is a prime $p \mid n$ with $\omega_p > L(x)$ and $\varepsilon(p) = \varepsilon(n)$, (iv) there is a prime $p \mid n$ with $\omega_p > L(x)$ and $\varepsilon(p) \neq \varepsilon(n)$,
- (v) $n > xL(x)^{-1}$ and every prime $p \mid n$ is at most $L(x)^3$.

Clearly, the number of *n* in class (i) is at most $xL(x)^{-1}$. The number of primes *p* with $\omega_p \leq L(x)$ is

$$\sum_{m \leq L(x)} \sum_{\omega_p = m} 1 \ll \sum_{m \leq L(x)} m < L(x)^2.$$

Therefore the number of Lucas pseudoprimes in class (ii) is at most

(28)
$$\sum_{\substack{p>L(x)^3\\ \omega_p \le L(x)}} \frac{x}{p} < xL(x)^{-3} \sum_{\substack{\omega_p \le L(x)}} 1 \ll xL(x)^{-1}.$$

If p is a prime dividing a Lucas pseudoprime n, we have

(29)
$$n \equiv 0 \pmod{p}, \quad n - \varepsilon(n) \equiv 0 \pmod{\omega_p}, \quad (p, \omega_p) = 1.$$

For a fixed p, the numbers $n \le x$ that satisfy (29) can be split into two cases: those with $\varepsilon(n) = \varepsilon(p)$ and those with $\varepsilon(n) = -\varepsilon(p)$. In the first case, n = pis a solution to (29), but is not a Lucas pseudoprime. Thus, corresponding to a prime p in class (iii) there are at most $x/p\omega_p$ Lucas pseudoprimes $n \le x$. We conclude that the number of Lucas pseudoprimes in class (iii) is at most

(30)
$$\sum_{\substack{p \le x \\ \omega_p > L(x)}} \frac{x}{p\omega_p} \ll \frac{x \log_2 x}{L(x)}.$$

Suppose p, n are as in class (iv) and n = kp. From (29) we have

$$\varepsilon(n) \equiv n = kp \equiv k\varepsilon(p) \; (\mathrm{mod}\,\omega_n),$$

so that $k \equiv -1 \pmod{\omega_p}$. The number of $k \leq x/p$ with $k \equiv -1 \pmod{\omega_p}$ is exactly $[(x/p + 1)/\omega_p]$, so the number of Lucas pseudoprimes in class (iv) is at most

(31)
$$\sum_{\substack{p \le x \\ \omega_p > L(x)}} \left(\frac{x}{p\omega_p} + \frac{1}{\omega_p} \right) \ll \frac{x \log_2 x}{L(x)}$$

Every n in class (v) has a divisor d with

(32)
$$x/L(x)^4 < d \le x/L(x)$$
.

As in (29), we have

(33)
$$n \equiv 0 \pmod{d}, \quad n - \varepsilon(n) \equiv 0 \pmod{\omega_d}, \quad (d, \omega_d) = 1,$$

so that *n* is in one of two residue classes $(\mod d\omega_d)$, depending on whether $\varepsilon(n) = 1$ or -1. Therefore, the number of *n* in class (v) is at most

$$2\sum'\left(1+\frac{x}{d\omega_d}\right) \leq \frac{2x}{L(x)} + x\sum'\frac{2}{d\omega_d} = \frac{2x}{L(x)} + x\sum_{m\leq x}\frac{2}{m}\sum_{\omega_d=m}'\frac{1}{d},$$

where \sum' means the sum is over d in the range (32). By Theorem 3, and a partial summation argument, the inner sum is at most

$$\exp\left(-\log x \frac{2 + \log_3 x}{2\log_2 x}\right)$$

uniformly in m, provided x is sufficiently large. Therefore, the number of n in class (v) is at most

(34)
$$x \cdot \exp\left(-\log x \frac{1 + \log_3 x}{2\log_2 x}\right)$$

for large x.

Each of the classes has $o(xL(x)^{-1/2})$ Lucas pseudoprimes, which proves the theorem. \Box

BIBLIOGRAPHY

- 1. R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417.
- 2. R. Balasubramanian and M. Ram Murty, *Elliptic pseudoprimes*. II, Seminaire de theorie des nombres, Paris 1988-89 (C. Goldstein, ed.), Birkhäuser, 1990, pp. 13-25.
- 3. E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-735.
- 4. G. Cornacchia, Su di un metodo per la risoluzione in numeri interi dell' equazione $\sum_{h=0}^{n} C_h x^{n-h} y^h = P$, Giornale di Matematiche di Battaglini **46** (1908), 33-90.
- 5. P. Erdös, P. Kiss, and A. Sárközy, A lower bound for the counting function of Lucas pseudoprimes, Math. Comp. 41 (1988), 315-323.
- 6. D. M. Gordon, Pseudoprimes on elliptic curves, Math. Comp. 52 (1989), 231-245.
- 7. R. Gupta and M. Ram Murty, *Primitive points on elliptic curves*, Compositio Math. 58 (1986), 13-44.
- 8. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979.
- 9. B. W. Jones, *The arithmetic theory of quadratic forms*, Math. Assoc. Amer., Baltimore, MD, 1950.
- 10. S. Lang, Elliptic curves: Diophantine analysis, Springer-Verlag, Heidelberg, 1978.
- 11. H. W. Lenstra, Jr., *Elliptic curves and number-theoretic algorithms*, Proc. Internat. Congr. Math. (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 99–120.
- 12. C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
- _____, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9.
- <u>, Two methods in elementary analytic number theory</u>, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, The Netherlands, 1989, pp. 135–161.
- R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (1985), 483-494.
- 16. M. Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602 Current address: Sandia National Laboratories, Org. 1423, P.O. Box 5800, Albuquerque, New Mexico 87185

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602