THE DISTRIBUTION OF LUCAS AND ELLIPTIC PSEUDOPRIMES

DANIEL M. GORDON AND CARL POMERANCE

$$
\begin{aligned}
& \text { ABSTRACT. Let } \mathscr{L}(x) \text { denote the counting function for Lucas pseudoprimes, } \\
& \text { and } \mathscr{E}(x) \text { denote the elliptic pseudoprime counting function. We prove that, } \\
& \text { for large } x, \mathscr{L}(x) \leq x L(x)^{-1 / 2} \text { and } \mathscr{E}(x) \leq x L(x)^{-1 / 3} \text {, where } \\
& \qquad L(x)=\exp (\log x \log \log \log x / \log \log x) .
\end{aligned}
$$

1. Introduction

A pseudoprime is a composite number n for which $2^{n-1} \equiv 1 \bmod n$. The smallest pseudoprime is 341 . Let $\mathscr{P}(x)$ be the number of pseudoprimes up to x. The second author, in $[12,13]$, showed that for all large x

$$
\exp \left\{(\log x)^{5 / 14}\right\} \leq \mathscr{P}(x) \leq x L(x)^{-1 / 2}
$$

where $L(x)=\exp \left(\log x \log _{3} x / \log _{2} x\right)$ and $\log _{k}$ is the k-fold iteration of the natural logarithm. The exponent $5 / 14$ has since been improved to $85 / 207$ (see [14]).

Let P and Q be coprime integers with $D=P^{2}-4 Q \neq 0, P>0$ and $P Q \neq 1$. Let $U_{0}=0, U_{1}=1$, and $U_{k}=P U_{k-1}-Q U_{k-2}$ for $k \geq 2$. Then a composite number n is a Lucas pseudoprime if $(n, 2 D)=1$ and

$$
\begin{equation*}
U_{n-\varepsilon(n)} \equiv 0 \quad(\bmod n), \tag{1}
\end{equation*}
$$

where $\varepsilon(n)$ denotes the Jacobi symbol $(D \mid n)$. Let $\mathscr{L}(x)=\mathscr{L}_{P, Q}(x)$ be the number of Lucas pseudoprimes up to x. The best known bounds for $\mathscr{L}(x)$ are:

$$
\exp \left\{(\log x)^{c_{1}}\right\} \leq \mathscr{L}(x) \leq x \cdot \exp \left\{-c_{2}\left(\log x \log _{2} x\right)^{1 / 2}\right\}
$$

for some absolute positive constants c_{1} and c_{2}. The upper bound is due to Baillie and Wagstaff [1], and the lower bound is due to Erdös, Kiss, and Sárközy [5]. Of course, the counting function $\mathscr{L}(x)$ depends on the choice of P and Q. The above result is thus understood to hold for all $x \geq x_{0}(P, Q)$.

[^0]The first author introduced a similar test using elliptic curves. Let E be an elliptic curve over \mathbf{Q} with complex multiplication by an order in $K=\mathbf{Q}(\sqrt{-r})$, for $r \in \mathbf{Z}^{+}$, and suppose E has a rational point $P=\left(x_{0}, y_{0}\right)$ of infinite order. Then, if n is a prime which is inert in K and does not divide the discriminant of E,

$$
\begin{equation*}
(n+1) P \equiv \mathscr{O} \quad(\bmod n) . \tag{2}
\end{equation*}
$$

That is, when we view E as an elliptic curve over the finite field $\mathbf{Z} / n \mathbf{Z}$, the image of the point P has order dividing $n+1$. An elliptic pseudoprime is a composite number n for which $(-r \mid n)=-1, n$ is coprime to the discriminant of E, and n satisfies (2). (The concept of $(n+1) P \equiv \mathscr{O}(\bmod n)$ for composite n will be made precise in the next section.) Let $\mathscr{E}(x)=\mathscr{E}_{E, P}(x)$ be the number of elliptic pseudoprimes less than x. The best known upper bound for elliptic pseudoprimes was recently found by Balasubramanian and Murty, in [2]: for all sufficiently large x depending on the choice of curve E and point P, we have

$$
\mathscr{E}(x) \leq x \cdot \exp \left\{-c_{3}\left(\log x \log _{2} x\right)^{1 / 2}\right\}
$$

The number c_{3} is positive and absolute. No good general lower bounds for elliptic pseudoprimes are known; the only result is from [6], that for certain curves and points,

$$
\mathscr{E}(x) \geq \sqrt{\log x} / \log _{2} x
$$

In this paper we improve the upper bounds for $\mathscr{E}(x)$ and $\mathscr{L}(x)$. The techniques used are similar to those of [12], with modifications to deal with elliptic curves similar to those of [2]. We show that $\mathscr{E}(x) \leq x L(x)^{-1 / 3}$ and $\mathscr{L}(x) \leq x L(x)^{-1 / 2}$ for large x.

Throughout the paper, the letters p and q will always denote primes.

2. Elliptic curve preliminaries

For a field k of characteristic >3, an elliptic curve over k may be represented as

$$
E(k)=\left\{(x, y) \in k^{2}: y^{2}=x^{3}+a x+b\right\} \cup \mathscr{O},
$$

where $a, b \in k$ and \mathscr{O} is the point at infinity. E is nonsingular if the discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$. In this case, $E(k)$ can be naturally made into an additive group with \mathcal{O} being the identity element.

Suppose E is a nonsingular elliptic curve defined over \mathbf{Q}. Let End E denote the ring of endomorphisms of $E(\mathbf{Q})$. It is known that End E is either equal to \mathbf{Z} or an order in an imaginary quadratic field $K=\mathbf{Q}(\sqrt{-r})$. In the latter case, E is said to have complex multiplication by K. For instance, curves of the form $y^{2}=x^{3}-D x$ have complex multiplication by $\mathbf{Q}(\sqrt{-1})$; the endomorphism corresponding to i sends a point (x, y) to ($-x, i y$).

If E is defined over \mathbf{Q} and has complex multiplication by K, then K must have class number one, so that $r \in\{1,2,3,7,11,19,43,67,163\}$. Conversely, for each such r there are elliptic curves with complex multiplication by
O_{K}, the full ring of integers of K. In addition, the fields $\mathbf{Q}(\sqrt{-1}), \mathbf{Q}(\sqrt{-3})$, and $\mathbf{Q}(\sqrt{-7})$ have curves over \mathbf{Q} with End $E=\mathbf{Z}+2 O_{K}$, and $\mathbf{Q}(\sqrt{-3})$ has curves with End $E=\mathbf{Z}+3 O_{K}$.

For a rational number x, let u / v be its representation in lowest terms, where $v>0$. Then $\operatorname{Num}(x)=u$ will denote its numerator, $\operatorname{Den}(x)=v$ its denominator, and $\tilde{x}=u v$ their product.

Let $E(\mathbf{Q})$ be a nonsingular elliptic curve defined by the equation $y^{2}=x^{3}+$ $a x+b$, where the coefficients $a, b \in \mathbf{Q}$. If p is a prime with $(p, 6 \widetilde{\Delta})=1$, by an abuse of notation, we can use this same equation to define a nonsingular elliptic curve $E\left(\mathbf{F}_{p}\right)$ over \mathbf{F}_{p}, the field of p elements. In fact, there is a natural homomorphic projection $E(\mathbf{Q}) \rightarrow E\left(\mathbf{F}_{p}\right)$ which takes $(x, y) \in E(\mathbf{Q})$ to $(x \bmod p, y \bmod p)$. If one of x, y has a factor p in the denominator, then (x, y) maps to \mathscr{O} in $E\left(\mathbf{F}_{p}\right)$.

A celebrated theorem of Hasse is that for any nonsingular elliptic curve $E\left(\mathbf{F}_{p}\right)$, the number of points can be expressed as $p+1-a_{p}$, where $\left|a_{p}\right| \leq 2 \sqrt{p}$. There is a polynomial-time, deterministic algorithm, due to Schoof [15], for computing the number a_{p}. Nevertheless, for very large p, it is not an easy task to compute the order of $E\left(\mathbf{F}_{p}\right)$.

If E has complex multiplication by $K=\mathbf{Q}(\sqrt{-r})$, it is easier to compute $\left|E\left(\mathbf{F}_{p}\right)\right|$:

$$
\left|E\left(\mathbf{F}_{p}\right)\right|= \begin{cases}p+1, & p \text { inert in } K, \tag{3}\\ p+1-2 \beta, & p=(\beta+\gamma \sqrt{-r})(\beta-\gamma \sqrt{-r})\end{cases}
$$

where $2 \beta, 2 \gamma \in \mathbf{Z}$. Note that if p splits in K, formula (3) does not quite give $\left|E\left(\mathbf{F}_{p}\right)\right|$, since we do not know the sign of β (and if $K=\mathbf{Q}(\sqrt{-1})$ or $\mathbf{Q}(\sqrt{-3})$, there are extra units which add a few more possibilities). However, this is the only indeterminacy in (3), since primes p which split in K have a unique representation up to units as $\beta^{2}+r \gamma^{2}$.

The representation of p as $\beta^{2}+r \gamma^{2}$ can be found in random polynomial time by factoring the polynomial $x^{2}+r$ in \mathbf{F}_{p}, using Berlekamp's algorithm [3]. Once a number c is found such that $c^{2}+r \equiv 0(\bmod p)$, one may use the method of Cornacchia [4] to determine β and γ.

Determining the sign of β in (3) can in principle be done using class field theory; it is worked out for $K=\mathbf{Q}(\sqrt{-1})$ and $\mathbf{Q}(\sqrt{-3})$ in [11].

For a nonsingular curve $E(\mathbf{Q})$ with coefficients $a, b \in \mathbf{Q}$, define the division polynomial $\psi_{n}(x, y)$ by

$$
\begin{aligned}
& \psi_{0}=0 \\
& \psi_{1}=1 \\
& \psi_{2}=2 y \\
& \psi_{3}=3 x^{4}+6 a x^{2}+12 b x-a^{2} \\
& \psi_{4}=4 y\left(x^{6}+5 a x^{4}+20 b x^{3}-5 a^{2} x^{2}-4 a b x-8 b^{2}-a^{3}\right)
\end{aligned}
$$

and the recursion

$$
\psi_{m+n} \psi_{m-n}=\psi_{m-1} \psi_{m+1} \psi_{n}^{2}-\psi_{n-1} \psi_{n+1} \psi_{m}^{2}
$$

Thus,

$$
\begin{equation*}
\psi_{2 n+1}=\psi_{n}^{3} \psi_{n+2}-\psi_{n+1}^{3} \psi_{n-1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 y \psi_{2 n}=\psi_{n}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right) \tag{5}
\end{equation*}
$$

The division polynomials characterize the division points of $E(\mathbf{Q})$. Namely, $P=\left(x_{0}, y_{0}\right) \in E(\mathbf{Q})$ is an m-division point (i.e., $\left.m P=\mathscr{O}\right)$ if and only if $\psi_{m}\left(x_{0}, y_{0}\right)=0$. This continues to make sense if we replace \mathbf{Q} by some algebraic extension. However, we are primarily concerned here with the connection between the division polynomials and division points on $E\left(\mathbf{F}_{p}\right)$.

We now state three lemmas on division polynomials. See Chapter II of Lang [10] for many facts about these polynomials and, in particular, the following lemma.

Lemma 1. Suppose $E(\mathbf{Q})$ is a nonsingular elliptic curve with coefficients $a, b \in$ \mathbf{Q}, and let $P=\left(x_{0}, y_{0}\right)$ be a point of infinite order on $E(\mathbf{Q})$. For a prime p with $(p, 6 \tilde{\Delta})=1$, let \bar{P} be the image of P in $E\left(\mathbf{F}_{p}\right)$. Suppose $2 \bar{P} \neq \mathcal{O}$ on $E\left(\mathbf{F}_{p}\right)$. Then for any integer $m>2$ we have

$$
m \bar{P}=\mathscr{O} \text { in } E\left(\mathbf{F}_{p}\right) \Leftrightarrow \psi_{m}\left(x_{0}, y_{0}\right) \equiv 0 \quad(\bmod p)
$$

Of course, we understand the rational number $\psi_{m}\left(x_{0}, y_{0}\right)$ to be $0(\bmod p)$ if in reduced form its numerator is $0(\bmod p)$.

The second lemma involves the size of the values of the division polynomials.
Lemma 2. Suppose E is a nonsingular elliptic curve, and $P=\left(x_{0}, y_{0}\right)$ is a point in $E(\mathbf{Q})$ of infinite order. Then for all natural numbers m,

$$
\left|\psi_{m}\left(x_{0}, y_{0}\right)\right|<c^{m^{2}-3}
$$

for some constant c depending on the choice of curve E and point P.
Proof. Choose c such that $c^{6} \geq \max \left\{2, y_{0}^{-2}\right\}$ and $\left|\psi_{m}\left(x_{0}, y_{0}\right)\right|<c^{m^{2}-3}$ for $m=2,3,4$. It is easy to show by induction that $\left|\psi_{m}\left(x_{0}, y_{0}\right)\right|<c^{m^{2}-3}$ holds for all m, using (4) and (5).

Corollary 1. For E and P as in Lemmas 1 and 2, the number of primes p for which $m P=\mathscr{O}$ in $E\left(\mathbf{F}_{p}\right)$ is $O\left(m^{2}\right)$.
Proof. By Lemma 1, all such primes p divide the numerator of $\psi_{m}\left(x_{0}, y_{0}\right)$, and by Lemma 2, $\psi_{m}\left(x_{0}, y_{0}\right)=O\left(c^{m^{2}}\right)$. Therefore, it suffices to show that the denominator of $\psi_{m}\left(x_{0}, y_{0}\right)$ is bounded by $c_{2}^{m^{2}}$.

Suppose we give a grading to the ring $\mathbf{Z}[a, b, x, y]$ by giving a weight 4, b weight $6, x$ weight 2 , and y weight 3 . Then $\psi_{m}(x, y)$ is homogeneous
of weight $m^{2}-1$ with respect to this grading [10, p. 39]. Therefore, the denominator of $\psi_{m}\left(x_{0}, y_{0}\right)$ is less than

$$
\left|\operatorname{Den}\left(y_{0}\right)^{m^{2} / 3} \operatorname{Den}\left(x_{0}\right)^{m^{2} / 2} \operatorname{Den}(a)^{m^{2} / 4} \operatorname{Den}(b)^{m^{2} / 6}\right|<c_{2}^{m^{2}}
$$

Corollary 1 implies the case $r=1$ of Lemma 14 in Gupta and Murty [7]. They prove a more general result using a considerably more involved argument.

Suppose $E(\mathbf{Q}), P=\left(x_{0}, y_{0}\right)$, and p are as in Lemma 1, and $E(\mathbf{Q})$ has complex multiplication by $K=\mathbf{Q}(\sqrt{-r})$, where $(-r \mid p)=-1$. Suppose $2 \bar{P} \neq \mathscr{O}$ on $E\left(\mathbf{F}_{p}\right)$. From (3), $(p+1) \bar{P}=\mathscr{O}$ in $E\left(\mathbf{F}_{p}\right)$, so that by Lemma 1,

$$
\psi_{p+1}\left(x_{0}, y_{0}\right) \equiv 0 \quad(\bmod p)
$$

The key observation is that even if we do not know for sure that p is prime, we can still check if the congruence $\psi_{p+1}\left(x_{0}, y_{0}\right) \equiv 0(\bmod p)$ holds. We say a composite natural number n which satisfies $(n, 6 \widetilde{\Delta})=1$ and $(-r \mid n)=-1$ is an elliptic pseudoprime (for the curve E and the point P) if

$$
\begin{equation*}
\left(\tilde{y}_{0}, n\right)=1 \quad \text { and } \quad \psi_{n+1}\left(x_{0}, y_{0}\right) \equiv 0 \quad(\bmod n) . \tag{6}
\end{equation*}
$$

This is what we mean by the congruence in (2) for n composite. Note that if n is prime, then the condition $\left(\tilde{y}_{0}, n\right)=1$ assures that $2 \bar{P} \neq \mathscr{O}$ on $E\left(\mathbf{F}_{n}\right)$.

For any natural number m with $\left(m, 6 \widetilde{\Delta} \tilde{y}_{0}\right)=1$, define $e_{m}=e_{m}(P)$ as the least positive number k for which $\psi_{k}\left(x_{0}, y_{0}\right) \equiv 0(\bmod m)$. (If no such k exists, or if $\left(m, 6 \tilde{\Delta} \tilde{y}_{0}\right)>1$, define $e_{m}=\infty$.) We will need the following lemma.

Lemma 3. If m is a positive squarefree number with $\left(m, 6 \tilde{\Delta} \tilde{y}_{0}\right)=1$, then $e_{m}=\operatorname{lcm}\left\{e_{q}: q \mid m\right\}$ and

$$
\psi_{k}\left(x_{0}, y_{0}\right) \equiv 0 \quad(\bmod m) \Leftrightarrow e_{m} \mid k
$$

Proof. The lemma is true for primes by Lemma 1, since e_{p} is the order of the point \bar{P} in $E\left(\mathbf{F}_{p}\right)$. Suppose $m=q_{1} q_{2} \cdots q_{s}$, with the q_{i} 's distinct primes. Let $l=\operatorname{lcm}\left\{e_{q_{1}}, \ldots, e_{q_{s}}\right\}$. Then $\psi_{l}\left(x_{0}, y_{0}\right) \equiv 0(\bmod m)$, so $e_{m} \leq l$. But $\psi_{e_{m}}\left(x_{0}, y_{0}\right) \equiv 0\left(\bmod q_{i}\right)$ for each q_{i}, so each $e_{q_{i}} \mid e_{m}$. Thus $e_{m}=l$. The second assertion in the lemma follows from similar considerations.

A similar lemma was proved by Ward [16] for $a, b, x_{0}, y_{0} \in \mathbf{Z}$, without the restriction that m be squarefree.

3. Elliptic PSEUDOPRIMES

Let $E(\mathbf{Q})$ be a nonsingular elliptic curve with coefficients $a, b \in \mathbf{Q}$ and complex multiplication by $\mathbf{Q}(\sqrt{-r})$, a complex quadratic field with class number one, and let $P=\left(x_{0}, y_{0}\right) \in E(\mathbf{Q})$ have infinite order.

Theorem 1. There is a constant $X_{0}=X_{0}(E, P)$ such that if n is a natural number and $x \geq X_{0}$ then

$$
\#\left\{m \leq x: m \text { is squarefree and } e_{m}=n\right\} \leq x \cdot \exp \left(-\log x \frac{3+\log _{3} x}{3 \log _{2} x}\right)
$$

Proof. Unlike the function $l_{2}(m)$ used in [12], e_{m} may be greater than m. Thus, n in the theorem may be greater than x. To determine an upper bound for n, if $m \leq x$ is squarefree and $e_{m}=n$, note that

$$
\begin{equation*}
e_{m} \leq \prod_{q \mid m}(q+1+2 \sqrt{q}) \leq m \prod_{q \mid m}\left(1+\frac{3}{\sqrt{q}}\right) \leq x \prod_{q \leq 2 \log x}\left(1+\frac{3}{\sqrt{q}}\right) \tag{7}
\end{equation*}
$$

for x so large that $x \leq \prod_{q \leq 2 \log x} q$. That such an inequality should eventually hold follows from the prime number theorem. Using partial summation and the prime number theorem, we have

$$
\log \prod_{q \leq 2 \log x}\left(1+\frac{3}{\sqrt{q}}\right) \ll \sum_{q \leq 2 \log x} \frac{1}{\sqrt{q}} \ll \frac{(\log x)^{1 / 2}}{\log _{2} x},
$$

and with (7) this implies that $e_{m} \leq x^{1+\varepsilon}$, for any $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$. We shall take $\varepsilon=1 / 2$ and shall assume n in the theorem satisfies $n \leq x^{3 / 2}$.

Let $c=1-\left(4+\log _{3} x\right) /\left(3 \log _{2} x\right)$, and $c^{\prime}=c-1 /\left(3 \log _{2} x\right)$, with x large enough so that $c^{\prime} \geq 7 / 8$. Then we need to estimate:

$$
\sum_{\substack{m \leq x \\ e_{m}=n}} 1 \leq x^{c} \sum_{e_{m}=n} m^{-c} \leq x^{c} \sum_{p\left|m \Rightarrow e_{p}\right| n} m^{-c}=x^{c} \prod_{e_{p} \mid n}\left(1-p^{-c}\right)^{-1}=x^{c} A
$$

say. To prove the theorem, it is sufficient to show that

$$
\begin{equation*}
\log A=o\left(\log x / \log _{2} x\right) \tag{8}
\end{equation*}
$$

Since $c \geq 7 / 8$, we have

$$
\log A=\sum_{e_{p} \mid n} p^{-c}+O(1)=\sum_{d \mid n} \sum_{e_{p}=d} p^{-c}+O(1) .
$$

There are only a finite number of primes p with $e_{p}=d$ for $d=1$ or 2 , since those primes divide either the numerator of $y_{0}($ for $d=2)$ or the denominator of y_{0} (for $d=1$). Assume now that $d \geq 3$.

By Corollary 1, there are at most αd^{2} primes p with $e_{p}=d$, where α is a constant depending only on E and P. Call them $q_{1}, q_{2}, \ldots, q_{t}$, where $0 \leq t \leq \alpha d^{2}$.

For each $q_{i}, E\left(\mathbf{F}_{q_{i}}\right)$ has order $k d$, where $k d$ is a multiple of d satisfying

$$
q_{i}+1-2 \sqrt{q_{i}} \leq k d \leq q_{i}+1+2 \sqrt{q_{i}} .
$$

Therefore, we have $q_{i}>k d / 2$. If q_{i} is inert in K, then $k d=q_{i}+1$. If q_{i} splits, say $q_{i}=(a+\sqrt{-r} b)(a-\sqrt{-r} b)=a^{2}+r b^{2}$, then by (3)

$$
k d=q_{i}+1-2 a=a^{2}-2 a+1+r b^{2}=(a-1)^{2}+r b^{2} .
$$

The number of representations of $k d$ as $\beta^{2}+r \gamma^{2}$ with $\beta, \gamma \geq 0$ is at most the number of divisors, $\tau(k d)$, of $k d$ (see, for example, Theorem 54 of [9]). In sum, the number of q_{i} with the order of $E\left(\mathbf{F}_{q_{i}}\right)$ being $k d$ is at most $2 \tau(k d)+1<3 \tau(k d)$, and all of these q_{i} satisfy $q_{i}>k d / 2$. From these facts, if $d \geq 3$,

$$
\sum_{e_{p}=d} p^{-c}=\sum_{i=1}^{t} q_{i}^{-c} \leq 6 \sum_{k=1}^{t} \tau(k d)(k d)^{-c} \leq 6 \tau(d) d^{-c} \sum_{k=1}^{\left[\alpha d^{2}\right]} \tau(k) k^{-c}
$$

Using partial summation, and $\sum_{k=1}^{N} \tau(k)=N \log N+O(N)$ (see [8, Theorem 320, p. 264]), this is

$$
\begin{align*}
& =6 \frac{\alpha^{1-c}}{1-c} \tau(d) d^{2-3 c}(2 \log d+\log \alpha)(1+o(1)) \tag{9}\\
& \ll(1-c)^{-1} \tau(d) d^{2-3 c} \log d
\end{align*}
$$

To get rid of the $\log d$ factor, note that

$$
\log d \ll \max \left\{d^{1 / \log _{2} x}, \log _{2} x \log _{3} x\right\} \leq d^{1 / \log _{2} x} \log _{2} x \log _{3} x
$$

Therefore,

$$
d^{2-3 c} \log d \ll d^{2-3 c^{\prime}} \log _{2} x \log _{3} x
$$

so that (9) implies

$$
\sum_{e_{p}=d} p^{-c} \ll(1-c)^{-1} \tau(d) d^{2-3 c^{\prime}} \log _{2} x \log _{3} x
$$

From the above computations, we have

$$
\begin{align*}
\log A & \ll(1-c)^{-1} \log _{2} x \log _{3} x \sum_{d \mid n} \tau(d) d^{2-3 c^{\prime}} \\
& <(1-c)^{-1} \log _{2} x \log _{3} x \prod_{p \mid n}\left(1+2 p^{2-3 c^{\prime}}+3\left(p^{2-3 c^{\prime}}\right)^{2}+\cdots\right) \tag{10}\\
& =(1-c)^{-1} \log _{2} x \log _{3} x \prod_{p \mid n}\left(1-p^{2-3 c^{\prime}}\right)^{-2}
\end{align*}
$$

Since $2-3 c^{\prime} \leq-5 / 8$, we have

$$
\log \prod_{p \mid n}\left(1-p^{2-3 c^{\prime}}\right)^{-2}=2 \sum_{p \mid n} p^{2-3 c^{\prime}}+O(1) \leq 2 \sum_{p \leq 2 \log x} p^{2-3 c^{\prime}}+O(1)
$$

where x is large enough that $\prod_{p \leq 2 \log x} p \geq x^{3 / 2}$. This implies

$$
\begin{equation*}
\log \prod_{p \mid n}\left(1-p^{2-3 c^{\prime}}\right)^{-2} \ll \frac{(\log x)^{3-3 c^{\prime}}}{\left(3-3 c^{\prime}\right) \log _{2} x} \ll \frac{\log _{2} x}{\log _{3} x} \tag{11}
\end{equation*}
$$

Thus, if x is sufficiently large, we have

$$
\prod_{p \mid n}\left(1-p^{2-3 c^{\prime}}\right)^{-2} \leq(\log x)^{1 / 2}
$$

and with (10) we get

$$
\log A \ll \frac{\log _{2} x}{\log _{3} x} \log _{2} x \log _{3} x(\log x)^{1 / 2}
$$

which is $o\left(\log x / \log _{2} x\right)$.
Theorem 2. For all sufficiently large x, depending on the choice of E and P, the number of elliptic pseudoprimes for E, P up to x is at most

$$
x \cdot \exp \left(-\frac{\log x \log _{3} x}{3 \log _{2} x}\right) .
$$

Proof. As is now customary with proofs of upper bounds on pseudoprimes, we will divide the elliptic pseudoprimes $n \leq x$ into several possibly overlapping classes:
(i) $n \leq x L(x)^{-1}$,
(ii) there is a prime $p \mid n$ with $e_{p} \leq L(x)^{3}$ and $p>L(x)^{10}$,
(iii) there is a prime $p \mid n$ with $e_{p}>L(x)^{3}$ and $p \leq 3 x / L(x)$,
(iv) there is a prime $p \mid n$ inert in K with $e_{p}>L(x)^{3}$,
(v) there is a prime $p \mid n$ which splits in K with $L(x)^{3}<e_{p} \leq \sqrt{x} L(x)$ and $p>3 x / L(x)$,
(vi) there is a prime $p \mid n$ which splits in K with $e_{p}>\sqrt{x} L(x)$ and $p>3 x / L(x)$,
(vii) $n>x L(x)^{-1}$ and every prime $p \mid n$ is at most $L(x)^{10}$.

Clearly, the number of n in class (i) is at most $x L(x)^{-1}$.
From Corollary 1, the number of primes p with $e_{p}=m$ is $O\left(m^{2}\right)$. Thus, the number of primes p with $e_{p} \leq L(x)^{3}$ is

$$
\sum_{m \leq L(x)^{3}} \sum_{e_{p}=m} 1 \ll \sum_{m \leq L(x)^{3}} m^{2}<L(x)^{9}
$$

Therefore, the number of elliptic pseudoprimes in class (ii) is at most

$$
\begin{equation*}
\sum_{\substack{p>L(x)^{10} \\ e_{p} \leq L(x)^{3}}} x / p<x L(x)^{-10} \sum_{e_{p} \leq L(x)^{3}} 1 \ll x L(x)^{-1} \tag{12}
\end{equation*}
$$

If p is a prime dividing an elliptic pseudoprime n, then from Lemma 3 (with $m=p$) we have

$$
\begin{equation*}
n \equiv 0 \quad(\bmod p), \quad n+1 \equiv 0 \quad\left(\bmod e_{p}\right), \quad\left(p, e_{p}\right)=1 \tag{13}
\end{equation*}
$$

The number of $n \leq x$ satisfying these conditions is at most

$$
\begin{equation*}
1+\frac{x}{p e_{p}} . \tag{14}
\end{equation*}
$$

Thus, the number of elliptic pseudoprimes in class (iii) is at most

$$
\sum_{\substack{p \leq 3 x / L(x) \\ e_{p}>L(x)^{3}}}\left(1+\frac{x}{p e_{p}}\right) \leq \sum_{p \leq 3 x / L(x)} 1+\sum_{\substack{p \leq 3 x / L(x) \\ e_{p}>L(x)^{3}}} \frac{x}{p e_{p}}
$$

The first sum on the right is at most $3 x / L(x)$, and the final sum is at most of order $x \log _{2} x / L(x)^{3}$. Thus, the number of elliptic pseudoprimes in class (iii) is

$$
\begin{equation*}
\ll \frac{x}{L(x)} \tag{15}
\end{equation*}
$$

If p is inert in $K, e_{p} \mid(p+1)$, and so $n=p$ is a solution to (13). This solution is prime, so the number of elliptic pseudoprimes divisible by p is at most $x / p e_{p}$. Therefore, the number of elliptic pseudoprimes in class (iv) is at most

$$
\begin{equation*}
\sum_{\substack{2<p \leq x \\ e_{p}>L(x)^{3}}} \frac{x}{p e_{p}} \ll \frac{x \log _{2} x}{L(x)^{3}} . \tag{16}
\end{equation*}
$$

For the special prime p dividing an elliptic pseudoprime n in class (v), let $k=n / p$, and $l=e_{p}$. Since p splits, we have $p=\beta^{2}+r \gamma^{2}$ for some $|\beta|,|\gamma|<\sqrt{x}$, where $2 \beta, 2 \gamma \in \mathbf{Z}$. From (3), we have $p \equiv 2 \beta-1\left(\bmod e_{p}\right)$, since $e_{p}| | E\left(\mathbf{F}_{p}\right) \mid$. Thus,

$$
\begin{equation*}
n+1=k p+1 \equiv k(2 \beta-1)+1 \equiv 0 \quad(\bmod l), \quad|\beta|<\sqrt{x} \tag{17}
\end{equation*}
$$

This means that possible integers 2β fall in a unique congruence class mod $l /(k, l)$. For a fixed k and l, the number of β satisfying (17) is at most

$$
\frac{4 \sqrt{x}}{l}(k, l)+O(1)
$$

For each β and l, the number of solutions γ to

$$
\left|E\left(\mathbf{F}_{p}\right)\right|=\beta^{2}+r \gamma^{2}+1-2 \beta \equiv 0 \quad(\bmod l)
$$

is bounded by $\tau(4 l /(r, 4 l))(r, 4 l) \ll \tau(l)$, since $r \ll 1$. Since $|\gamma|<\sqrt{x}$, the number of γ 's corresponding to any β and l is thus

$$
\ll\left(\frac{\sqrt{x}}{l}+O(1)\right) \tau(l)
$$

Summing over k and l shows the number of elliptic pseudoprimes in class (v) to be

$$
\begin{aligned}
& \ll \sum_{\substack{k \leq L(x) \\
L(x)^{3}<l \leq \sqrt{x} L(x)}}\left(\frac{\sqrt{x}}{l}(k, l)+O(1)\right)\left(\frac{\sqrt{x}}{l}+O(1)\right) \tau(l) \\
& =x \sum_{k, l} \frac{(k, l) \tau(l)}{l^{2}}+O\left(\sqrt{x} \sum_{k, l} \frac{(k, l) \tau(l)}{l}\right)+O\left(\sum_{k, l} \tau(l)\right) .
\end{aligned}
$$

The final sum is easily seen to be $O\left(\sqrt{x} L(x)^{2} \log x\right)$. The second sum is

$$
\ll \sqrt{x} L(x) \sum_{k, l} \frac{\tau(l)}{l} \leq \sqrt{x} L(x)^{2} \sum_{l} \frac{\tau(l)}{l} \ll \sqrt{x} L(x)^{2} \log ^{2} x .
$$

Finally, the first sum is

$$
\leq x L(x) \sum_{k, l} \frac{\tau(l)}{l^{2}} \leq x L(x)^{2} \sum_{l} \frac{\tau(l)}{l^{2}} \leq \frac{x}{L(x)} \sum_{l} \frac{\tau(l)}{l} \ll \frac{x \log ^{2} x}{L(x)} .
$$

Combining these estimates shows that the number of elliptic pseudoprimes in class (v) is

$$
\begin{equation*}
\ll \frac{x \log ^{2} x}{L(x)} . \tag{18}
\end{equation*}
$$

To estimate the size of class (vi), let $n=k p$ for some $k>1$. We have $p \equiv-1+a_{p}\left(\bmod e_{p}\right)$, since $e_{p}| | E\left(\mathbf{F}_{p}\right) \mid=p+1-a_{p}$. Since $n+1 \equiv 0\left(\bmod e_{p}\right)$, we have

$$
\begin{equation*}
k p+1 \equiv k\left(a_{p}-1\right)+1 \equiv 0\left(\bmod e_{p}\right), \tag{19}
\end{equation*}
$$

and so

$$
\left|k\left(a_{p}-1\right)+1\right| \geq e_{p}>\sqrt{x} L(x)
$$

Since $\left|a_{p}\right| \leq 2 \sqrt{p}$, this means that $k>L(x) / 3$. But then, $n=k p>x$, and so class (vi) is empty for x sufficiently large.

We will divide the pseudoprimes in class (vii) into two subclasses: those which have a squareful divisor s (i.e., for each prime p dividing s, p^{2} also divides s) with $s>L(x)^{2}$, and those which do not. The number of $n<x$ in the first subclass is at most

$$
\sum_{\substack{s>L(x)^{2} \\ s \text { squareful }}} \frac{x}{s} \ll \frac{x}{L(x)},
$$

using partial summation and the theorem that $\sum_{s \leq t, s \text { squareful }} 1 \ll \sqrt{t}$.
For the rest of class (vii), we have $x / L(x)<n \leq x$, every prime $p \mid n$ satisfies $p \leq L(x)^{10}$, and the squareful part of n does not exceed $L(x)^{2}$. Then n has a squarefree divisor d satisfying

$$
\begin{equation*}
x / L(x)^{13}<d \leq x / L(x)^{3} . \tag{20}
\end{equation*}
$$

(For let $m=$ the largest squarefree divisor of n. Then $x / L(x)^{3}<m \leq x$. We have some $d \mid m$ with $x / L(x)^{13}<d \leq x / L(x)^{3}$. But d is squarefree and $d \mid n$.)

As in (13), we have from Lemma 3 that

$$
\begin{equation*}
n \equiv 0 \quad(\bmod d), \quad n+1 \equiv 0 \quad\left(\bmod e_{d}\right), \quad\left(d, e_{d}\right)=1 \tag{21}
\end{equation*}
$$

Therefore, the number of such n is at most

$$
\sum^{\prime}\left(1+\frac{x}{d e_{d}}\right) \leq \frac{x}{L(x)}+x \sum^{\prime} \frac{1}{d e_{d}}=\frac{x}{L(x)}+x \sum_{m \leq x} \frac{1}{m} \sum_{e_{d}=m}^{\prime} \frac{1}{d},
$$

where \sum^{\prime} means the sum is over squarefree d in the range (20). By Theorem 1 , and a partial summation argument, the inner sum is at most

$$
\exp \left(-\log x \frac{2+\log _{3} x}{3 \log _{2} x}\right)
$$

uniformly in m, provided x is sufficiently large. Therefore, the number of n in class (vii) is at most

$$
\begin{equation*}
x \cdot \exp \left(-\log x \frac{1+\log _{3} x}{3 \log _{2} x}\right) \tag{22}
\end{equation*}
$$

for large x.
Summing the estimates for each of the classes gives the theorem.

4. LUCAS PSEUDOPRIMES

The proof of the bound for $\mathscr{L}(x)$ will be similar to the proof for $\mathscr{E}(x)$. First we will need a few facts about Lucas pseudoprimes. See [1] for proofs.

Let ω_{m} denote the rank of apparition of m in the Lucas sequence U_{k}; i.e., the least positive k for which $m \mid U_{k}$. If $(p, 2 D Q)=1$, we have

$$
\omega_{p} \mid(p-\varepsilon(p)),
$$

where we recall that $\varepsilon(p)=(D \mid p)$. Further, $\omega_{p^{k}} \mid p^{k-1} \omega_{p}$, and for any m with $(m, 2 D Q)=1$, we have $\omega_{m}=\operatorname{lcm}\left\{\omega_{p^{k}}: p^{k} \| m\right\}$. If $(m, 2 D Q)=1$, then $m \mid U_{k}$ if and only if $\omega_{m} \mid k$. Also, let α and β be the distinct roots of $x^{2}-P x+Q=0$. Then for $k \geq 0$,

$$
\begin{equation*}
U_{k}=\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta} \tag{23}
\end{equation*}
$$

We are now ready to prove:
Theorem 3. There is an $x_{0}=x_{0}(P, Q)$ such that if n is a natural number and $x \geq x_{0}$, then

$$
\#\left\{m \leq x: \omega_{m}=n\right\} \leq x \cdot \exp \left(-\log x \frac{3+\log _{3} x}{2 \log _{2} x}\right)
$$

Proof. As in Theorem 1, we may assume that $n<x^{3 / 2}$. In fact, if the set in the theorem is not empty, it is possible to show that $n \ll x \log \log x$.

Let $c=1-\left(4+\log _{3} x\right) / 2 \log _{2} x$, and let x be large enough that $c \geq 7 / 8$. Then

$$
\sum_{\substack{m \leq x \\ \omega_{m}=n}} 1 \leq x^{c} \sum_{\omega_{m}=n} m^{-c} \leq x^{c} \sum_{p\left|m \Rightarrow \omega_{p}\right| n} m^{-c}=x^{c} \prod_{\omega_{p} \mid n}\left(1-p^{-c}\right)^{-1}=x^{c} A
$$

say. As before, it suffices to show

$$
\begin{equation*}
\log A=o\left(\log x / \log _{2} x\right) \tag{24}
\end{equation*}
$$

Since $c \geq 7 / 8$, we have

$$
\log A=\sum_{\omega_{p} \mid n} p^{-c}+O(1)=\sum_{d \mid n} \sum_{\omega_{p}=d} p^{-c}+O(1) .
$$

The primes p with $\omega_{p}=d$ are divisors of U_{d}, which is $O\left(\max \{|\alpha|,|\beta|\}^{d}\right)$ by (23), so there are at most $O(d)$ of them. (The assumptions on P and Q imply that $U_{d} \neq 0$.) Call them $q_{1}, q_{2}, \ldots, q_{t}$, where $0 \leq t \leq \delta d$, for some constant δ depending only on P and Q. Those p with $p \mid 2 D$ contribute at most $O(1)$ to $\log A$, so we may assume the primes q_{i} do not divide $2 D$. Thus, each $q_{i} \equiv \pm 1(\bmod d)$, so

$$
\begin{equation*}
\sum_{\omega_{p}=d} p^{-c}=\sum_{i=1}^{t} q_{i}^{-c} \leq \sum_{k=1}^{t} 2(k d)^{-c} \leq 2 d^{-c} \sum_{k=1}^{[\delta d]} k^{-c} \ll(1-c)^{-1} d^{1-2 c} \tag{25}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\log A \ll(1-c)^{-1} \sum_{d \mid n} d^{1-2 c}<(1-c)^{-1} \prod_{p \mid n}\left(1-p^{1-2 c}\right)^{-1} \tag{26}
\end{equation*}
$$

Since $1-2 c \leq-3 / 4$, we have

$$
\log \prod_{p \mid n}\left(1-p^{1-2 c}\right)^{-1}=\sum_{p \mid n} p^{1-2 c}+O(1) \leq \sum_{p \leq 2 \log x} p^{1-2 c}+O(1)
$$

where x is large enough that $\prod_{p \leq 2 \log x} p \geq x^{3 / 2}$. This implies

$$
\begin{equation*}
\log \prod_{p \mid n}\left(1-p^{1-2 c}\right)^{-1} \ll \frac{(\log x)^{2-2 c}}{(2-2 c) \log _{2} x} \ll \frac{\log _{2} x}{\log _{3} x} \tag{27}
\end{equation*}
$$

Thus, if x is sufficiently large, we have

$$
\prod_{p \mid n}\left(1-p^{1-2 c}\right)^{-1} \leq(\log x)^{1 / 2}
$$

and with (26) we get

$$
\log A \ll \frac{\log _{2} x}{\log _{3} x}(\log x)^{1 / 2}
$$

which is $o\left(\log x / \log _{2} x\right)$.
Theorem 4. For all sufficiently large x, depending on the choice of P, Q, the number of Lucas pseudoprimes up to x is at most $x L(x)^{-1 / 2}$.
Proof. As in Theorem 2, we will divide the Lucas pseudoprimes $n \leq x$ into several possibly overlapping classes:
(i) $n \leq x L(x)^{-1}$,
(ii) there is a prime $p \mid n$ with $\omega_{p} \leq L(x)$ and $p>L(x)^{3}$,
(iii) there is a prime $p \mid n$ with $\omega_{p}>L(x)$ and $\varepsilon(p)=\varepsilon(n)$,
(iv) there is a prime $p \mid n$ with $\omega_{p}>L(x)$ and $\varepsilon(p) \neq \varepsilon(n)$,
(v) $n>x L(x)^{-1}$ and every prime $p \mid n$ is at most $L(x)^{3}$.

Clearly, the number of n in class (i) is at most $x L(x)^{-1}$.
The number of primes p with $\omega_{p} \leq L(x)$ is

$$
\sum_{m \leq L(x)} \sum_{\omega_{p}=m} 1 \ll \sum_{m \leq L(x)} m<L(x)^{2} .
$$

Therefore the number of Lucas pseudoprimes in class (ii) is at most

$$
\begin{equation*}
\sum_{\substack{p>L(x)^{3} \\ \omega_{p} \leq L(x)}} \frac{x}{p}<x L(x)^{-3} \sum_{\omega_{p} \leq L(x)} 1 \ll x L(x)^{-1} \tag{28}
\end{equation*}
$$

If p is a prime dividing a Lucas pseudoprime n, we have

$$
\begin{equation*}
n \equiv 0(\bmod p), \quad n-\varepsilon(n) \equiv 0\left(\bmod \omega_{p}\right), \quad\left(p, \omega_{p}\right)=1 \tag{29}
\end{equation*}
$$

For a fixed p, the numbers $n \leq x$ that satisfy (29) can be split into two cases: those with $\varepsilon(n)=\varepsilon(p)$ and those with $\varepsilon(n)=-\varepsilon(p)$. In the first case, $n=p$ is a solution to (29), but is not a Lucas pseudoprime. Thus, corresponding to a prime p in class (iii) there are at most $x / p \omega_{p}$ Lucas pseudoprimes $n \leq x$. We conclude that the number of Lucas pseudoprimes in class (iii) is at most

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ \omega_{p}>L(x)}} \frac{x}{p \omega_{p}} \ll \frac{x \log _{2} x}{L(x)} \tag{30}
\end{equation*}
$$

Suppose p, n are as in class (iv) and $n=k p$. From (29) we have

$$
\varepsilon(n) \equiv n=k p \equiv k \varepsilon(p)\left(\bmod \omega_{p}\right)
$$

so that $k \equiv-1\left(\bmod \omega_{p}\right)$. The number of $k \leq x / p$ with $k \equiv-1\left(\bmod \omega_{p}\right)$ is exactly $\left[(x / p+1) / \omega_{p}\right]$, so the number of Lucas pseudoprimes in class (iv) is at most

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ \omega_{p}>L(x)}}\left(\frac{x}{p \omega_{p}}+\frac{1}{\omega_{p}}\right) \ll \frac{x \log _{2} x}{L(x)} \tag{31}
\end{equation*}
$$

Every n in class (v) has a divisor d with

$$
\begin{equation*}
x / L(x)^{4}<d \leq x / L(x) \tag{32}
\end{equation*}
$$

As in (29), we have

$$
\begin{equation*}
n \equiv 0(\bmod d), \quad n-\varepsilon(n) \equiv 0\left(\bmod \omega_{d}\right), \quad\left(d, \omega_{d}\right)=1 \tag{33}
\end{equation*}
$$

so that n is in one of two residue classes $\left(\bmod d \omega_{d}\right)$, depending on whether $\varepsilon(n)=1$ or -1 . Therefore, the number of n in class (v) is at most

$$
2 \sum^{\prime}\left(1+\frac{x}{d \omega_{d}}\right) \leq \frac{2 x}{L(x)}+x \sum^{\prime} \frac{2}{d \omega_{d}}=\frac{2 x}{L(x)}+x \sum_{m \leq x} \frac{2}{m} \sum_{\omega_{d}=m}^{\prime} \frac{1}{d}
$$

where \sum^{\prime} means the sum is over d in the range (32). By Theorem 3, and a partial summation argument, the inner sum is at most

$$
\exp \left(-\log x \frac{2+\log _{3} x}{2 \log _{2} x}\right)
$$

uniformly in m, provided x is sufficiently large. Therefore, the number of n in class (v) is at most

$$
\begin{equation*}
x \cdot \exp \left(-\log x \frac{1+\log _{3} x}{2 \log _{2} x}\right) \tag{34}
\end{equation*}
$$

for large x.
Each of the classes has $o\left(x L(x)^{-1 / 2}\right)$ Lucas pseudoprimes, which proves the theorem.

Bibliography

1. R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417.
2. R. Balasubramanian and M. Ram Murty, Elliptic pseudoprimes. II, Seminaire de theorie des nombres, Paris 1988-89 (C. Goldstein, ed.), Birkhäuser, 1990, pp. 13-25.
3. E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-735.
4. G. Cornacchia, $S u$ di un metodo per la risoluzione in numeri interi dell' equazione $\sum_{h=0}^{n} C_{h} x^{n-h} y^{h}=P$, Giornale di Matematiche di Battaglini 46 (1908), 33-90.
5. P. Erdös, P. Kiss, and A. Sárközy, A lower bound for the counting function of Lucas pseudoprimes, Math. Comp. 41 (1988), 315-323.
6. D. M. Gordon, Pseudoprimes on elliptic curves, Math. Comp. 52 (1989), 231-245.
7. R. Gupta and M. Ram Murty, Primitive points on elliptic curves, Compositio Math. $\mathbf{5 8}$ (1986), 13-44.
8. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979.
9. B. W. Jones, The arithmetic theory of quadratic forms, Math. Assoc. Amer., Baltimore, MD, 1950.
10. S. Lang, Elliptic curves: Diophantine analysis, Springer-Verlag, Heidelberg, 1978.
11. H. W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms, Proc. Internat. Congr. Math. (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 99-120.
12. C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
13. \quad A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9.
14. Two methods in elementary analytic number theory, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, The Netherlands, 1989, pp. 135-161.
15. R. Schoof, Elliptic curves over finite fields and the computation of square roots $\bmod p$, Math. Comp. 44 (1985), 483-494.
\rightarrow M. Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74.

Department of Computer Science, University of Georgia, Athens, Georgia 30602
Current address: Sandia National Laboratories, Org. 1423, P.O. Box 5800, Albuquerque, New Mexico 87185

Department of Mathematics, University of Georgia, Athens, Georgia 30602

[^0]: Received April 6, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11Y11; Secondary 11Y40, 11A51.

 The first author was supported in part by a grant from Sandia National Laboratories.
 The second author was supported in part by an NSF grant and the Institute for Advanced Study.

